应用数学系

当前位置: 首页 > 团队队伍 > 应用数学系 > 正文

张敏敏

发布日期:2024-01-29 作者: 来源:bevitor伟德官网 点击:

张敏敏讲师。主要从事测度论及其应用、分形几何以及调和分析相关研究。在国内外期刊上以第一作者或通讯作者发表SCI论文6篇。参与研究国家自然科学基金项目2项。

 

研究领域

测度谱理论

分形几何

 

主讲课程

线性代数

 

 

代表性论文

1. M.-M. Zhang, Spectrality of Moran Sierpinski-type measures on R²Canad. Math. Bull. 64(2021), no. 4, 1024-1040.

2. Z.-C. Chi and M.-M. Zhang, Fourier orthonormal bases of two dimensional Moran measures with four-element digits, Complex Anal. Oper. Theory 16(2022), no. 4, Paper No. 53, 20 pp.

3. C. Wang and M.-M. Zhang, Beurling dimension and a class of Moran measures, Chaos, Solitons & Fractals, 166(2023), Paper No. 112926, 7pp.

4. S.-D. Wei and M.-M. Zhang, There are four-element orthogonal exponentials of planar self-affine measures with two digits, Complex Anal. Oper. Theory, 17(2023), no. 1, Paper No. 1, 17 pp.

5. J.-F. Lu, S. Wang and M.-M. Zhang, Self-similar measures with product-for digit sets and their spectra, J. Math. Anal. Appl., 527(2023) no.1, Paper No. 127340, 15pp.

6. F.-L. Yin, X.-G. He and M.-M. Zhang, Fourier bases on general self-similar Sierpinski measures, Chaos, Solitons & Fractals, 173(2023), Paper No. 113723, 9pp.